Abstract

ABSTRACTWe have explored two novel comonomers, namely, 4,16‐dicarboxyl[2.2]paracyclophane and 5,5′,6,6′‐tetraamino‐3,3,3′,3′‐tetramethyl‐1,1′‐spirobi[indane], for the synthesis of co‐polybenzimidazoles (co‐PBIs) with intrinsic porosity. Both these monomers possess twisted structures that can lead to “awkward” macromolecular shapes that cannot pack efficiently. The consequences of introducing these two monomers on the structure and properties of PBIs are reported. The random copolymers synthesized are amorphous and possess glass transition temperatures (Tgs) greater than 400 °C. Tg decreases with increasing comonomer content indicating an increase in fractional free volume. The copolymers have low surface area. TEM and BET measurements show evidence of mesopore formation. The copolymers show significant carbon dioxide adsorption. Single chain molecular dynamics simulation of 24‐mer repeat units shows intramolecular void spaces arising as a result of distorted polymer chain with reduced conformational mobility. These studies define a new synthetic strategy for “bottoms‐up” synthesis of PBIs with intrinsic porosity. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1046–1057

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.