Abstract
Recent theories and simulations suggest that molecular additives can bind to the surfaces of nuclei, lower the surface energy, and accelerate nucleation. Experiments have shown that oligomeric and polymeric additives can also modify nucleation rates of proteins, ice, and minerals; however, general design principles for oligomeric or polymeric promoters do not yet exist. Here we investigate oligomeric additives for which each segment of the oligomer can bind to surfaces of nuclei. We use semigrand canonical Monte Carlo simulations in a Potts lattice gas model to study the effects of oligomer chain length, volume fraction, and binding strength. We find that increasing each of those parameters lowers the nucleation barrier. At extremely low oligomer concentrations, the nucleation kinetics can be modeled as though each oligomer is a heterogeneous nucleation site in solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.