Abstract

The receptor for lipopolysaccharide LPS (CD14) exists in a membrane-associated (mCD14) and a soluble form (sCD14). Previous studies indicate that monocytes produce sCD14 by limited proteolysis of the membrane-bound receptor. In this study we demonstrate that human monocytes also produce sCD14 by a protease-independent mechanism. To investigate the molecular nature of this second pathway we studied sCD14 formation in the monocytic cell line Mono Mac 6 (MM6) and in CD14 transfectants. Both MM6 and the CD14 transfectants constitutively produce sCD14 by a protease-independent mechanism. Structural analysis of sCD14 produced by the CD14 transfectants reconfirmed the presence of the COOH terminus predicted from the cDNA. Since glycosylphosphatidylinositol anchor attachment is associated with the removal of a hydrophobic C-terminal signal peptide, our finding demonstrates that the transfectants secrete sCD14 which escaped this posttranslational modification. Identical results obtained for sCD14 derived from peritoneal dialysis fluid of a patient with kidney dysfunction show the in vivo relevance of this pathway for sCD14 production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.