Abstract

Shigella flexneri invades colonic epithelial cells by pathogen-induced phagocytosis. The three proposed effectors of S. flexneri internalization are invasion plasmid antigens B (IpaB), IpaC, and IpaD, which are encoded on the pathogen's 230-kb virulence plasmid and translocated to the extracellular milieu via the Mxi-Spa translocon. To date, there are no definitive functional data for any purified Ipa protein. Here, we describe the first characterization of highly purified recombinant IpaC, which elicits numerous epithelial cell responses related to events that take place during pathogen invasion. 125I-labeled IpaC binds cultured Henle 407 intestinal cells with an apparent dissociation constant in the low micromolar range. Moreover, incubation of epithelial cells with IpaC results in general changes in cellular phosphoprotein content, demonstrating this protein's ability to influence cellular protein kinase activities. These results contrast dramatically with those seen for recombinant IpaD, which does not bind to or induce detectable changes in the normal activities of cultured epithelial cells. In addition to influencing host cell activities, preincubation of epithelial cells with purified IpaC enhances uptake of S. flexneri by host cells. A similar result is seen when the cells are preincubated with a highly concentrated water extract of virulent S. flexneri 2a (strain 2457T). Interestingly, soluble IpaC also appears to promote uptake of the noninvasive S. flexneri 2a strain BS103. Purified IpaD failed to enhance the uptake of virulent S. flexneri and did not facilitate uptake of BS103. Taken together, the data suggest that IpaC is a potential effector of the host cell biological activities and may be responsible for entry of S. flexneri into target cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.