Abstract

Matrix metalloproteinases (MMPs) are zinc dependent endopeptidases that can be released from neurons in an activity dependent manner to play a role in varied forms of learning and memory. MMP inhibitors impair hippocampal long term potentiation (LTP), spatial memory, and behavioral correlates of drug addiction. Since MMPs are thought to influence LTP through a β1 integrin dependent mechanism, it has been suggested that these enzymes cleave specific substrates to generate integrin binding ligands. In previously published work, we have shown that neuronal activity stimulates rapid MMP dependent shedding of intercellular adhesion molecule-5 (ICAM-5), a synaptic adhesion molecule expressed on dendrites of the telencephalon. We have also shown that the ICAM-5 ectodomain can interact with β1 integrins to stimulate integrin dependent phosphorylation of cofilin, an event that occurs with dendritic spine maturation and LTP. In the current study, we investigate the potential for the ICAM-5 ectodomain to stimulate changes in α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) dependent glutamatergic transmission. Single cell recordings show that the ICAM-5 ectodomain stimulates an increase in the frequency, but not the amplitude, of AMPA mini excitatory post synaptic currents (mEPSCs). With biotinylation and precipitation assays, we also show that the ICAM-5 ectodomain stimulates an increase in membrane levels of GluA1, but not GluA2, AMPAR subunits. In addition, we observe an ICAM-5 associated increase in GluA1 phosphorylation at serine 845. Concomitantly, ICAM-5 affects an increase in GluA1 surface staining along dendrites without affecting an increase in dendritic spine number. Together these data are consistent with the possibility that soluble ICAM-5 increases glutamatergic transmission and that post-synaptic changes, including increased phosphorylation and dendritic insertion of GluA1, could contribute. We suggest that future studies are warranted to determine whether ICAM-5 is one of a select group of synaptic CAMs whose shedding contributes to MMP dependent effects on learning and memory.

Highlights

  • Matrix metalloproteinases (MMPs) are a family of structurally related enzymes that can be released from cells as pro- and active forms

  • In a previously published study, we have shown that neuronal activity stimulates rapid MMP-dependent cleavage of the synaptic cell adhesion molecule intercellular adhesion molecule-5 (ICAM-5), an adhesion molecule that is highly expressed on dendrites of the telencephalon [11,30]

  • We have shown that it can stimulate a β1 integrin dependent increase in action potential frequency, an endpoint that can be associated with changes including, but not limited to, altered frequency or amplitude of amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) mini excitatory post synaptic currents (mEPSCs) [32]

Read more

Summary

Introduction

Matrix metalloproteinases (MMPs) are a family of structurally related enzymes that can be released from cells as pro- and active forms. They were named for their ability to process proteins of the extracellular matrix but are appreciated to act on a variety of soluble molecules and cell surface receptors as well [1]. Consistent with a role for MMPs in learning and memory, expression and release of the enzymes can be increased by neuronal activity [9,10,11,12]. Such release may be rapid, in that

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call