Abstract

Nitric oxide (NO), the principal endogenous ligand for soluble guanylate cyclase (sGC), stimulates that enzyme and accumulation of intracellular cGMP, which mediates many of the (patho) physiological effects of NO. Previous studies demonstrated that 2-substituted adenine nucleotides, including 2-methylthioATP (2MeSATP) and 2-chloroATP (2ClATP), allosterically inhibit guanylate cyclase C, the membrane-bound receptor for the Escherichia coli heat-stable enterotoxin in the intestine. The present study examined the effects of 2-substituted adenine nucleotides on crude and purified sGC. 2-Substituted nucleotides inhibited basal and NO-activated crude and purified sGC, when Mg2+ served as the substrate cation cofactor. Similarly, 2-substituted adenine nucleotides inhibited those enzymes when Mn2+, which activates sGC in a ligand-independent fashion, served as the substrate cation cofactor. Inhibition of sGC by 2-substituted nucleotides was associated with a decrease in Vmax, consistent with a noncompetitive mechanism. In contrast to guanylate cyclase C, 2-substituted nucleotides inhibited sGC by a guanine nucleotide-independent mechanism. These studies demonstrate that 2-substituted adenine nucleotides allosterically inhibit basal and ligand-stimulated sGC. They support the suggestion that allosteric inhibition by adenine nucleotides is a general characteristic of the family of guanylate cyclases. This allosteric inhibition is mediated by direct interaction of adenine nucleotides with sGC, likely at the catalytic domain in a region outside the substrate-binding site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call