Abstract

Ferritin is a potential medicine delivery vehicle and vaccine platform, and its efficient expression is a prerequisite for widespread application. This study introduces a soluble expression strategy for recombinant bovine ferritin heavy chain (rFTH) in a prokaryotic system and an improved protein purification method. The amplified rFTH gene was ligated into the prokaryotic expression vector pET30a. The recombinant vectors with the N-terminal His-tag(N-His) or C-terminal His-tag(C-His) were translated and expressed separately. The results showed that the solubility of rFTH with C-His was significantly higher than that with N-His. The expression of rFTH with C-His was attempted at 37 °C and 16 °C, respectively. The results showed that the proportion of soluble protein expressed at 37 °C was more than 90%, higher than that expressed at 16 °C. Then rFTH with C-His was purified successfully using anion exchange chromatography, modified PEG precipitation, and dialysis. The rFTH protein was characterized using SDS-PAGE, Native-PAGE, Western blot, transmission electron microscopy, and dynamic light scattering. The results demonstrated that the purified rFTH protein self-assembled into ferritin nanoparticles with a regular shape and uniform size. This study sheds new light on the soluble expression of ferritin and provides a foundation for the construction of bovine ferritin nanoparticle production platforms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call