Abstract

BackgroundAstrocyte activation is a common pathological feature in many brain diseases with neuroinflammation, and revealing the underlying mechanisms might shed light on the regulatory processes of the diseases. Recently, soluble epoxide hydrolase (sEH) has been proposed to affect neuroinflammation in brain injuries. However, the roles of astrocytic sEH in brains with neurodegeneration remain unclear.MethodsThe expression of astrocytic sEH in the brains of APPswe/PSEN1dE9 (APP/PS1) mice developing Alzheimer’s disease (AD)-like pathology was evaluated by confocal imaging. LPS-activated primary astrocytes with mRNA silencing or overexpression of sEH were used to investigate its regulatory roles in astrocyte activation and the induction of pro-inflammatory markers. Primary astrocytes isolated from a sEH knockout (sEH−/−) background were also applied.ResultsThe immunoreactivity of sEH was increased in activated astrocytes in parallel with the progression of AD in APP/PS1 mice. Our data from primary astrocyte cultures further demonstrate that the overexpression of sEH ameliorated, while the silencing of sEH mRNA enhanced, the lipopolysaccharides (LPS)-induced expression of pro-inflammatory markers, such as inducible nitric oxide, cyclooxygenase 2 (COX-2), and pro-inflammatory cytokines. These findings suggest that sEH negatively regulates astrocyte immune responses. Enhanced immune responses found in LPS-activated sEH−/− astrocytes also support the notion that the expression of sEH could suppress the immune responses during astrocyte activation. Similarly, sEH−/− mice that received intraperitoneal injection of LPS showed exacerbated astrocyte activation in the brain, as observed by the elevated expression of glial fibrillary acidic protein (GFAP) and pro-inflammatory markers. Moreover, our data show that the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) was upregulated in activated astrocytes from sEH mouse brains, and the pharmacological blockade of STAT3 activity alleviated the pro-inflammatory effects of sEH deletion in LPS-activated primary astrocytes.ConclusionsOur results provide evidence, for the first time, showing that sEH negatively regulates astrocytic immune responses and GFAP expression, while the underlying mechanism at least partly involves the downregulation of STAT3 phosphorylation. The discovery of a novel function for sEH in the negative control of astrocytic immune responses involving STAT3 activation confers further insights into the regulatory machinery of astrocyte activation during the development of neurodegeneration.

Highlights

  • Astrocytes are major glial cells residing in the brain

  • Immunoreactivity of soluble epoxide hydrolase (sEH) in activated astrocytes increased in parallel with the progression of Alzheimer’s disease (AD) Because activated astrocytes are closely associated with the progression of AD, we first evaluated the expression levels of sEH in activated astrocytes in the vicinity of Aβ plaques

  • Because glial fibrillary acidic protein (GFAP) has been widely used as a marker for astrocyte activation [2], activated astrocytes were identified by immunohistochemistry with anti-GFAP antibody

Read more

Summary

Introduction

Astrocytes are major glial cells residing in the brain. Astrocytes become activated during the pathogenesis of many neurodegenerative diseases such as Alzheimer’s disease (AD). Among the many signaling pathways involved in the induction of pro-inflammatory genes, the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) was recently reported to be critical for the induction of glial fibrillary acidic protein (GFAP) and proinflammatory genes such as TNFα and IL-6 [10,11,12]. These results suggest that STAT3 may play an important role in the control of astrocyte activation and the associated immune responses. The roles of astrocytic sEH in brains with neurodegeneration remain unclear

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call