Abstract

Soluble epoxide hydrolase (sEH) diminishes vasodilatory and neuroprotective effects of epoxyeicosatrienoic acids by hydrolyzing them to inactive dihydroxy metabolites. The primary goals of this study were to investigate the effects of acute sEH inhibition by trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB) on infarct volume, functional outcome, and changes in cerebral blood flow (CBF) in a rat model of ischemic stroke. Focal cerebral ischemia was induced in rats for 90 min followed by reperfusion. At the end of 24 h after reperfusion rats were euthanized for infarct volume assessment by triphenyltetrazolium chloride staining. Brain cortical sEH activity was assessed by ultra performance liquid chromatography-tandem mass spectrometry. Functional outcome at 24 and 48 h after reperfusion was evaluated by arm flexion and sticky-tape tests. Changes in CBF were assessed by arterial spin-labeled-MRI at baseline, during ischemia, and at 180 min after reperfusion. Neuroprotective effects of t-AUCB were evaluated in primary rat neuronal cultures by Cytotox-Flour kit and propidium iodide staining. t-AUCB significantly reduced cortical infarct volume by 35% (14.5 ± 2.7% vs. 41.5 ± 4.5%), elevated cumulative epoxyeicosatrienoic acids-to-dihydroxyeicosatrienoic acids ratio in brain cortex by twofold (4.40 ± 1.89 vs. 1.97 ± 0.85), and improved functional outcome in arm-flexion test (day 1: 3.28 ± 0.5 s vs. 7.50 ± 0.9 s; day 2: 1.71 ± 0.4 s vs. 5.28 ± 0.5 s) when compared with that of the vehicle-treated group. t-AUCB significantly reduced neuronal cell death in a dose-dependent manner (vehicle: 70.9 ± 7.1% vs. t-AUCB0.1μM: 58 ± 5.11% vs. t-AUCB0.5μM: 39.9 ± 5.8%). These findings suggest that t-AUCB may exert its neuroprotective effects by affecting multiple components of neurovascular unit including neurons, astrocytes, and microvascular flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.