Abstract
Soluble epoxide hydrolase (sEH) is a key enzyme in the metabolic conversion and degradation of P450 eicosanoids called epoxyeicosatrienoic acids (EETs). Genetic variations in the sEH gene, designated EPHX2, are associated with ischemic stroke risk. In experimental studies, sEH inhibition and gene deletion reduce infarct size after focal cerebral ischemia in mice. Although the precise mechanism of protection afforded by sEH inhibition remains under investigation, EETs exhibit a wide array of potentially beneficial actions in stroke, including vasodilation, neuroprotection, promotion of angiogenesis and suppression of platelet aggregation, oxidative stress and post-ischemic inflammation. Herein we argue that by capitalizing on this broad protective profile, sEH inhibition represents a prototype "combination therapy" targeting multiple mechanisms of stroke injury with a single agent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.