Abstract
BackgroundEvidence indicates that soluble forms of amyloid-β (Aβ) are vasoactive, which may contribute to cerebrovascular dysfunction noted in patients with Alzheimer's Disease and cerebral amyloid angiopathy. The effects of soluble Aβ on penetrating cerebral arterioles - the vessels most responsible for controlling cerebrovascular resistance - have not been studied.ResultsFreshly dissolved Aβ1-40 and Aβ1-42, but not the reverse peptide Aβ40-1 constricted isolated rat penetrating arterioles and diminished dilation to adenosine tri-phosphate (ATP). Aβ1-42 also enhanced ATP-induced vessel constriction. Aβ1-40 diminished arteriolar myogenic response, and an anti-Aβ antibody reduced Aβ1-40 induced arteriolar constriction. Prolonged Aβ exposure in vessels of Tg2576 mice resulted in a marked age-dependent effect on ATP-induced vascular responses. Vessels from 6 month old Tg2576 mice had reduced vascular responses whereas these were absent from 12 month old animals. Aβ1-40 and Aβ1-42 acutely increased production of reactive oxygen species (ROS) in cultured rat cerebro-microvascular cells. The radical scavenger MnTBAP attenuated this Aβ-induced oxidative stress and Aβ1-40-induced constriction in rat arterioles.ConclusionsOur results suggest that soluble Aβ1-40 and Aβ1-42 directly affect the vasomotor regulation of isolated rodent penetrating arterioles, and that ROS partially mediate these effects. Once insoluble Aβ deposits are present, arteriolar reactivity is greatly diminished.
Highlights
Evidence indicates that soluble forms of amyloid-β (Aβ) are vasoactive, which may contribute to cerebrovascular dysfunction noted in patients with Alzheimer's Disease and cerebral amyloid angiopathy
Extraluminal application of soluble Aβ1-40, Aβ1-42 the reverse peptide Aβ40-1 on arteriolar tone and myogenic response Rat penetrating cerebral arterioles exposed to Aβ1-40 had a maximum diameter of 63.2 ± 4.1 um and developed a spontaneous tone diameter of 46.9 ± 3.3 um (n = 8)
Together with the observed loss of myogenic response, increased soluble Aβ levels may lead to pronounced vessel dysfunction in vivo
Summary
Evidence indicates that soluble forms of amyloid-β (Aβ) are vasoactive, which may contribute to cerebrovascular dysfunction noted in patients with Alzheimer's Disease and cerebral amyloid angiopathy. The effects of soluble Aβ on penetrating cerebral arterioles - the vessels most responsible for controlling cerebrovascular resistance - have not been studied. Monomers of Aβ can aggregate resulting in deposits of fibrillar Aβ both as neuritic plaques and, within blood vessels, as cerebral amyloid angiopathy (CAA). Such deposits are hallmarks of Alzheimer's Disease (AD) [1]. Several lines of evidence suggest that Aβ aggregates but soluble Aβ species may contribute to AD with its vasoactive properties. In animal models of AD, some but not all studies suggest that solu-
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.