Abstract

cAMP is a critical second messenger mediating activity-dependent neuronal survival and neurite growth. We investigated the expression and function of the soluble adenylyl cyclase (sAC, ADCY10) in CNS retinal ganglion cells (RGCs). We found sAC protein expressed in multiple RGC compartments including the nucleus, cytoplasm and axons. sAC activation increased cAMP above the level seen with transmembrane adenylate cyclase (tmAC) activation. Electrical activity and bicarbonate, both physiologic sAC activators, significantly increased survival and axon growth, whereas pharmacologic or siRNA-mediated sAC inhibition dramatically decreased RGC survival and axon growth in vitro, and survival in vivo. Conversely, RGC survival and axon growth were unaltered in RGCs from AC1/AC8 double knock-out mice or after specifically inhibiting tmACs. These data identify a novel sAC-mediated cAMP signaling pathway regulating RGC survival and axon growth, and suggest new neuroprotective or regenerative strategies based on sAC modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call