Abstract

Protein aggregation is associated with a number of protein misfolding diseases and is a major concern for therapeutic proteins. Aggregation is caused by the presence of aggregation-prone regions (APRs) in the amino acid sequence of the protein. The lower the aggregation propensity of APRs and the better they are protected by native interactions within the folded structure of the protein, the more aggregation is prevented. Therefore, both the local thermodynamic stability of APRs in the native structure and their intrinsic aggregation propensity are a key parameter that needs to be optimized to prevent protein aggregation. The Solubis method presented here automates the process of carefully selecting point mutations that minimize the intrinsic aggregation propensity while improving local protein stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.