Abstract

The interaction of surfactants with liposomes eventually leads to the rupture of such structures and the solubilization of the phospholipid components. In this paper, solubilization is regarded as a decrease in light scattering of liposome suspensions. To this end, in accordance with the nomenclature, adopted by Lichtenberg, three parameters were considered as corresponding to the effective surfactant/lipid molar ratios (Re) at which light scattering starts to decrease, Resat; reaches 50% of the original value, Re50; and shows no further decrease, Resol. These parameters corresponded to the Re at which the surfactant (i) saturated the liposomes, (ii) resulted in a 50% solubilization of vesicles and (iii) led to a total solubilization of liposomes. The surfactants tested were the nonionic surfactant octylphenol ethoxylated with 10 units of ethylene oxide or Triton X‐100 (OP‐10EO), two anionic surfactants, sodium dodecyl sulfate and sodium dodecyl ether sulfate, and an amphoteric surfactant dodecyl betaine (D‐Bet). Unilamellar liposomes formed by egg phosphatidylcholine containing increasing amounts of phosphatidic acid were used. The Re parameters were the lowest for D‐Bet, followed by OP‐10EO, whereas the anionic surfactants always showed the highest values regardless of the electrical charge of the lipid bilayers. These parameters seem also to be inversely related to the critical micelle concentration (CMC) of the surfactant, except for OP‐10EO. Moreover, the CMC values of the surfactant/lipid systems at 0.5 mM lipid concentration corresponded in all cases to the surfactant concentration at which liposomes were saturated by surfactants. As a consequence, this ratio can be regarded as an interesting parameter associated with the mixed micelle formation in liposome solubilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call