Abstract
Although surfactants are frequently used in enabling formulations of poorly water-soluble drugs, the link between their structure and drug solubilization capacity is still unclear. We studied the solubilization of the “brick-dust” molecule itraconazole by 16 surfactants and 3 phospholipid:surfactant mixtures. NMR spectroscopy was used to study in more details the drug-surfactant interactions. Very high solubility of itraconazole (up to 3.6 g/L) was measured in anionic surfactant micelles at pH = 3, due to electrostatic attraction between the oppositely charged (at this pH) drug and surfactant molecules. 1H NMR spectroscopy showed that itraconazole is ionized at two sites (2+ charge) at these conditions: in the phenoxy-linked piperazine nitrogen and in the dioxolane-linked triazole ring. The increase of amphiphile hydrophobic chain length had a markedly different effect, depending on the amphiphile type: the solubilization capacity of single-chain surfactants increased, whereas a decrease was observed for double-chained surfactants (phosphatidylglycerols). The excellent correlation between the chain melting temperatures of phosphatidylglycerols and itraconazole solubilization illustrated the importance of hydrophobic chain mobility. This study provides rules for selection of itraconazole solubilizers among classical single-chain surfactants and phospholipids. The basic physics underpinning the described effects suggests that these rules should be transferrable to other “brick-dust” molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Drug Delivery Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.