Abstract

Pluronic ® block copolymers are commercially available symmetric triblock copolymers with poly(ethylene oxide), PEO, as the hydrophilic end blocks and poly(propylene oxide), PPO, as the hydrophobic middle block. In this paper, the solubilization of hydrocarbons by aggregates of Pluronic ® block copolymers in water is examined in the framework of a simple molecular theory of solubilization. The aggregates have an inner core region made up of PPO and the solubilizate and an outer corona region made up of PEO and water. Expressions for the standard state free energy change associated with solubilization of hydrocarbons by aggregates having spherical, cylindrical, and lamellar shapes are presented. These free energy contributions account for the mixing of the core block with the solubilizate, the consequent changes in the state of deformation of the core block, the changes in the state of dilution and deformation of the corona block, the formation of the core-solvent interface, and the backfolding of the triblock copolymer which ensures that the two end blocks are in contact with the solvent. Utilizing these free energy expressions, we predict the core size, the corona thickness, and the aggregation number of the micelle and also the volume fraction of the hydrocarbon solubilized in the core, for seven aromatic and aliphatic hydrocarbon solubilizates incorporated within numerous Pluronic ® compounds. The calculated results show that a growth in aggregate size occurs both because of the incorporation of the hydrocarbon and also the increase in the intrinsic number of block copolymer molecules per aggregate. More interestingly, solubilization is shown to induce a transition in aggregate shapes from spheres to cylinders and then to lamellae. The shape transition is found to be critically controlled by the free energy of mixing of the solubilizate with the core forming PPO block.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call