Abstract
Purposes: Solubilization of inclusion bodies expressed in E. coli is a critical step during manufacturing of recombinant proteins expressed as inclusion bodies. So far, various methods have been used for solubilization and purification of inclusion body proteins to obtain active proteins with high purity and yield. The aim of this study was to examine the benefit of organic solvents such as alcohols in solubilization of recombinant interferon β-1b inclusion bodies. Methods: Effect of important parameters inclusion pH, concentration and type of denaturant and concentration of alcoholic solvents were optimized to formulate a suitable solubilization buffer and investigate their effect on solubilization of interferon β-1b inclusion bodies. Results: Our findings showed the acidic pH in the range of 2-3 is more suitable than alkaline pH >12 for solubilization and achieving higher content of interferon β-1beta and pure recombinant protein. We have also demonstrated that 1% SDS acts better than 2M urea to solubilize Inclusion body proteins of interferon β-1b at pH of 2-3. The interferon concentration was 2.35 mg per 100 mg IB when we used 40% (v/v) 1-propanol and 20% (v/v) 2-butanol into the buffer solution as well. Conclusion: The optimized method provides gentile condition for solubilization of inclusion body at high protein concentration and purity with a degree of retention of native secondary structure which makes this method valuable to be used in production and research area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.