Abstract

A model system based on arrays of three concentric rings of discrete agar droplets is described which allowed study of fungal growth in vitro in nutritionally-heterogeneous conditions. Droplets containing different combinations of glucose and calcium phosphate were used to study the consequences of spatially separating these components in relation to metal phosphate solubilization by Rhizoctonia solani. A pH indicator, bromocresol purple, was added to the agar to visualise the localised production of acidity by the fungus. In the presence of the fungus, solubilization of calcium phosphate on homogeneous agar plates only occurred when glucose was present in the underlying medium. However, solubilization occurred in droplets containing calcium phosphate, but no glucose, when glucose was present in other droplets within the tessellation and where fungal hyphae spanned the droplets. This demonstrates that substrate was transported via mycelia from glucose-containing domains, with the functional consequence of metal phosphate solubilization. In another design, where the inner ring of droplets contained glucose and the outer ring contained only calcium phosphate, acidification of all droplets in the outer ring was observed when the inner droplets contained glucose. However, solubilization of calcium phosphate only occurred when the concentration of glucose in the inner droplets was greater than 2% (w/v). This indicated that a threshold concentration of carbon source may be required before such mechanisms of solubilization are invoked. There was also evidence for reverse translocation of substrate from newly colonised glucose-containing droplets in the outer ring to the central droplets, where fungal growth had originated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.