Abstract

A series of double hydrophobic tails of N-methyl diethanolammonium bromide cationic surface active agents were synthesized. Their chemical structures were elucidated using different analytical tools including elemental analyses, FTIR, mass fragmentation, and 1H-NMR spectroscopy. Their surface parameters including critical micelle concentration (CMC), effectiveness (π CMC ), efficiency (Pc 20), maximum surface excess (Γ max ), and minimum surface area (A min ) were calculated. The behaviors of the synthesized molecules in their solutions were discussed based on the data of surface parameters, micellization and adsorption thermodynamics at 25°, 40°, and 55°C. The experimental data of surface activity showed that these molecules are tends to form micelles in the bulk of their solutions at lower temperatures. On contrarily, they prefer to adsorb at higher temperatures. The synthesized cationic surfactants were used as solubilizing agent for nonpolar substrate (paraffin oil) at 25°C. The results of solubilization measurements showed good ability for the used surfactants towards solubilizing paraffin oil in aqueous medium. The results showed that the chemical structure of the solubilizate plays an important rule in its solubilization. Several factors were found to influence the extent of solubilization including: number of alkyl chains within surfactant molecule, symmetry of molecules and chain length of hydrophobic parts. The results were rationalized by the Kraft point and HLB values of the used surfactants. Furthermore, solubilization curves showed the steady state solubilization of each surfactant used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.