Abstract
Membrane proteins (MPs) need to be extracted from biological membranes and purified in their native state for most structural and functional in vitro investigations. Amphiphilic copolymers, such as amphipols (APols), have emerged as very useful alternatives to detergents for keeping MPs water-soluble under their native form. However, classical APols, such as poly(acrylic acid) (PAA) derivatives, seldom enable direct MP extraction. Poly(styrene maleic anhydride) copolymers (SMAs), which bear aromatic rings as hydrophobic side groups, have been reported to be more effective extracting agents. In order to test the hypothesis of the role of cyclic hydrophobic moieties in membrane solubilization by copolymers, we have prepared PAA derivatives comprising cyclic rather than linear aliphatic side groups (CyclAPols). As references, APol A8-35, SMAs, and diisobutylene maleic acid (DIBMA) were compared with CyclAPols. Using as models the plasma membrane of Escherichia coli and the extraction-resistant purple membrane from Halobacterium salinarum, we show that CyclAPols combine the extraction efficiency of SMAs with the stabilization afforded to MPs by classical APols such as A8-35.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.