Abstract

The protein giant neurofibromin (320 kDa) is the protein product of the NF1 tumor suppressor gene, alterations of which are responsible for the pathogenesis of neurofibromatosis type 1 (NF1). Neurofibromin is a Ras-specific GTPase activating protein (RasGAP) that, 15 years after the cloning of the gene, remains the only clearly defined function of the protein. In a structural proteomics approach, we aimed at defining functions beyond RasGAP activity based on the discovery of structural modules. Given the poor outcome of domain prediction tools, we have undertaken a fragment solubility survey covering the full protein sequence, with the aim of defining new domain boundaries or fragments that could be investigated by biochemical methods including structural analysis. More than 200 constructs have been expressed and tested for solubility in small scale assays. Boundaries were chosen based upon secondary structure predictions, sequence conservation among neurofibromin orthologues and chemical properties of amino acids. Using this strategy we recently discovered a novel bipartite module in neurofibromin. We have expanded our study to include ESPRIT, a library-based construct screen, to perform fragment testing at a finer level with respect to the choice of terminal residues. Our study confirms earlier notions about the challenges neurofibromin presents to the biochemist and points to strategies whereby the success rate may be enhanced in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.