Abstract

Solubility of high molecular weight n-paraffins in supercritical carbon dioxide has been a matter of interest to many researchers. However, not sufficient solubility experimental data are available although the methods by which the experimental data are obtained have many varieties. Utilizing cubic equations of state is an effective method for solubility prediction of n-paraffins in supercritical fluids. In this work, five cubic equations of state (EOS) are employed to predict the solubility of six high molecular weight n-paraffins: n-tetracosane, n-pentacosane, n-hexacosane, n-heptacosane, n-octacosane and n-nonacosane, in supercritical carbon dioxide. The EOSs used are van der Waals, Redlich-Kwong and MohsenNia-Modarress-Mansoori (MMM) as two-parameter EOSs and Soave and Peng-Robinson as three-parameter EOSs. The results show that the two-parameter MMM EOS is more accurate in solubility prediction than the other EOSs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.