Abstract

A semiempirical relationship was developed to correlate solubility of solid polycyclic aromatic hydrocarbons (PAHs) in pressurized hot water using only pure-component properties. The required properties of water include cohesive energy density, internal pressure, and relative permittivity (dielectric constant), all at the particular temperature and pressure. The required properties of PAHs include triple-point temperature, enthalpy of fusion, the molar volume of the subcooled liquid, and the molar volume of the solid. The correlation was developed from experimental solubility data of eight 2- to 5-ring PAHs at temperatures within 313−498 K, with the solubility (equilibrium mole fraction) ranging within 10-11 to 10-3. Considering the wide range of the source data, the extreme nonideality of water−PAH systems, and the absence of any water−PAH interaction parameters, the correlation provides an adequate reproduction of the source data. Further, the correlation yields a relatively reasonable prediction of PAH...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.