Abstract
The cloud points of various amorphous polyether, polyacrylate, and polysiloxane homopolymers, and a variety of commercially available block copolymers, were measured in CO2 at temperatures from 25 to 65 °C and pressures of ca. 1000−6000 psia. Almost without exception, the solubility of amorphous polymers increases with a decrease in the cohesive energy density, or likewise, the surface tension of the polymer. With this decrease in surface tension, the polymer cohesive energy density becomes closer to that of CO2. Consequently, solubility is governed primarily by polymer−polymer interactions, while polymer−CO2 interactions play a secondary role. The solubility is strongly dependent upon molecular weight for the less CO2-philic polymers. The solubilities of high-molecular-weight poly(fluoroalkoxyphosphazenes) in CO2 were comparable to those of poly(1,1-dihydroperfluorooctylacrylate), one of the most CO2-soluble polymers known.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.