Abstract

Over the past few decades, development of innovative techniques for carbon capture and storage (CCS) from power plant flue gas has become imperative due to substantial increase in the global atmospheric concentration of greenhouse gases, particularly anthropogenic CO2. In this regard, it is of utmost importance to have accurate thermodynamic experimental data along with reliable predictive models to be used in the novel CCS techniques such as hydrate-based geological storage methods. In this study, we introduced a new approach to accurately measure the solubility of three different types of simulated power plant flue gases, including coal-fired flue gas, gas-fired flue gas, and syngas, in water and aqueous solutions of NaCl. To mimic real operational conditions, the solubility measurements were carried out over a temperature range from 273.25 to 303.05 K and pressures up to 22 MPa with 5, 10, and 15 wt % NaCl. The experimental data were presented in conjunction with thermodynamic predictions. To predict t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.