Abstract

Carbon dioxide capture and sequestration is drawing increasing attention as a potential method for controlling greenhouse gas emissions. Low cost ionic liquid analogues, namely, deep eutectic solvents (DESs), have attracted more attention for use in a diversity of applications. DESs exhibit many favourable properties, such as availability, non-toxicity, biodegradability, recyclability, non-flammability, and low price.In this work, phosphonium- and ammonium-based DESs with different hydrogen bond donors (HBD) have been synthesised. Then, the CO2 solubility in the synthesised DESs at a fixed pressure and temperature was determined, experimentally. Furthermore, a mathematical model based on the Peng–Robinson (PR) equation of state (EoS) was developed to correlate the CO2 solubility in these types of DESs. The model was validated with the obtained experimental data and tested with other specific DESs reported in the literature over a wide range of temperature and pressure values. In general, there was a good agreement between the experimental data and the calculated data using PR EoS. The obtained model can be utilised to study the effectiveness of using DES in CO2 capturing processes or any other separation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.