Abstract

AbstractA systematic investigation of the equilibrium solubility of CO2 in aqueous piperazine solutions was conducted in a double‐jacketed stirred cell reactor. The solubilities of CO2 in the solution were measured at 20, 30, 40, and 50 °C with CO2 partial pressures ranging from 0.4–95 kPa. Generally the aqueous piperazine solution exhibits the same characteristics as conventional alkanolamines. Increasing the CO2 partial pressure increases the gas loading, however increasing the temperature or concentration decreases the CO2 loading. The values of the CO2 loading obtained confirm that the piperazine forms stable carbamates. The equilibrium solubility data were analyzed using a Kent‐Eisenberg approach. Representation of the model is generally in good agreement with that of the experimental data, especially at high temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.