Abstract

Knowledge on the solubility of gases, especially carbon dioxide (CO2), in monoethylene glycol (MEG) is relevant for a number of industrial applications such as separation processes and gas hydrate prevention. In this study, the solubility of CO2 in MEG was measured experimentally at temperatures of 333.15, 353.15, and 373.15 K. Experimental data were used to validate Monte Carlo (MC) simulations. Continuous fractional component MC simulations in the osmotic ensemble were performed to compute the solubility of CO2 in MEG at the same temperatures and at pressures up to 10 bar. MC simulations were also used to study the solubility of methane (CH4), hydrogen sulfide (H2S), and nitrogen (N2) in MEG at 373.15 K. Solubilities from experiments and simulations are in good agreement at low pressures, but deviations were observed at high pressures. Henry coefficients were also computed using MC simulations and compared to experimental values. The order of solubilities of the gases in MEG at 373.15 K was computed as H2S > CO2 > CH4 > N2. Force field modifications may be required to improve the prediction of solubilities of gases in MEG at high pressures and low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.