Abstract

For cost-efficient organic electronic devices, the consecutive deposition of active layers by solution-based processes is a key benefit. We report a synthetic approach enabling solubility reduction of bis(cyclopentadienyl)-substituted polyfluorenes as emissive layers in organic light-emitting diodes (OLEDs). Thermally induced retro-Diels–Alder reaction liberates free cyclopentadiene as “protecting group” and pending cyclopentadienyl units, which cross-link the polymer strands upon cooling via [4+2] cycloadditions. The activation temperature is tuned in the range of 180–250 °C through alkyl, alkoxy, or ester linkages. Ultimately, macrocyclic self-protected bis(cyclopentadienylene) moieties avoid extrusion of volatile cyclopentadiene during activation. The solvent resistance of the emissive layers after cross-linking is examined by absorption spectroscopy and white light scanning interferometry. The influence of the desolubilization procedure on the performance of solution-processed OLEDs is investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.