Abstract
The solubility of isophthalic acid (IPA) in four different binary solvent systems (water + methanol, water + ethanol, water + 1-propanol, and water + isopropanol) was measured by the gravimetric method at atmospheric pressure from 283.15 K to 323.15 K. Under certain solvent compositions, the solubility of IPA increased with increasing temperature. The trend of solubility under isothermal conditions setting differs as the mole fraction of organic solvent increases. The solubility of IPA in water + methanol and water + ethanol systems increased with the mole fraction of methanol or ethanol. In the system of water + 1-propanol and water + isopropanol, as the mole fraction of organic solvent increased, the solubility of IPA increased firstly and then decreased gradually. The Hansen solubility parameters of IPA and selected solvents were analyzed, the analysis showed that the miscibility of IPA with the selected solvent was the result of many factors. Molecular electrostatic potential surface (MEPS) and Hirshfeld surface (HS) analysis were used to investigate the intermolecular interactions. The solubility data were correlated using the Apelblat equation, van't Hoff equation, λh equation, and Jouyban–Acree model. Besides, the vant Hoff equation was employed to analyze the apparent thermodynamic properties of dissolving process including the Gibbs energy, enthalpy and entropy. All positive values indicated that the dissolving process of IPA was non-spontaneous, endothermic, and entropy-driven.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.