Abstract
Aqueous solubility is a critical factor for optimum drug delivery. In the present study, we investigated the potential of drug-cyclodextrin complexation as an approach for improving the solubility and bioavailability of famotidine, an H2-receptor antagonist and acid reducing drug which has poor solubility and bioavailability. Solubility improvement of drug by β-cyclodextrin was done by simple complexation approach using physical, kneading and co-precipitation methods and compared with physical mixture. Phase solubility profile indicated that the solubility of famotidine was significantly increased in presence of β-cyclodextrin and shows a linear graph with β-cyclodextrin indicating formation of inclusion complexes in a 1:1 molar ratio. β-Cyclodextrin-famotidine mixture have maximum stability constant 1477.6 M-1. The inclusion complex ratio 1:1 of kneading mixture was selected based on drug release profile and compared with physical mixture. Further characterization was done by using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) to identify the physicochemical interaction between drug and carrier and its effect on dissolution. Dissolution rate studies for selected inclusion complex was performed in 0.1 N HCl (pH 1.2), phosphate buffer (pH 7.5) and distilled water (pH 6.8) and compared these to pure drug profile which was found to be 2.34 fold increase in distilled water, 1.83 fold in HCl and 2.01 fold in phosphate buffer (pH 7.5). These results suggest that the kneaded complex of famotidine with β-cyclodextrin as hydrophilic complexation agent can substantially enhance the solubility and dissolution rate. Such complex has promising potential to improve the bioavailability of famotidine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pharmaceutical Sciences and Nanotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.