Abstract

Blends composed of isotropic linear poly (n-butylacrylate) of molecular weight M w = 112,000 g mol−1 and the commercial four-component nematic low molecular weight liquid crystal (LC) mixture E7 exhibit a strong shift of the single nematic–isotropic transition temperature T NI compared to that of the pure LCs, which was evidenced by using two complementary experimental techniques: differential scanning calorimetry (DSC) and high-performance liquid chromatography. The first one provides direct information about phase behaviour and variation of T NI of the polymer/LC blends, whereas the second one consists of analysing qualitatively and quantitatively the composition of millimetre-sized segregated LC domains in the two-phase region of the phase diagram. In order to understand the origin of the unusual phase behaviour, several LC blends were prepared by modifying the concentration of the four single LC components that are present in the eutectic E7 mixture, following the results from the previous chromatographic analysis. These model blends were investigated by DSC measurements, showing that the variation, particularly of the terphenyl LC compound concentration, plays a determining role for the phase behaviour of the LC mixture and the shift of T NI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.