Abstract
A series of alkyl viologens RV (R denotes ethyl, butyl, hexyl, heptyl, and dodecyl) was dissolved in poly(ethylene oxide) (PEO) oligomers (average molar masses of 200, 300, 400, 600 and 1000 g mol −1). The solubility of RV in PEO oligomers decreased with increasing alkyl chain length of RV and the molar mass of PEO. Cyclic voltammograms of RV in PEO containing 0.50 M LiClO 4 clearly show two redox waves. The ionic conductivity of PEO oligomers containing RV decreased with increasing alkyl chain length, suggesting the migration of RV itself in the PEO oligomers. Potential step chronoamperometry was used to obtain the apparent diffusion coefficient of RV in the PEO oligomers. The ionic conductivity has a linear relationship with the apparent diffusion coefficient regardless of the RV species, the PEO molar mass and the temperature. RV was shown to act as a redox mediator in PEO oligomers as long as the ionic conductivity of the PEO was high. Poly(oligo(oxyethylene) methacrylate) (PMEO) was used as a solid solvent for a series of alkyl viologens. Since PMEO is an excellent ion-conducting polymer, RV was confirmed to be an effective redox mediator in this PMEO. It was concluded in this study that ionic conductivity in the polymer matrix could be used as an effective parameter for prediction of the diffusion coefficient of charged organic molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.