Abstract

Abstract The solubility and various thermodynamic parameters of an antitumor drug brigatinib (BRN) in various ethanol (EtOH) + water (H2O) mixtures were determined in this study. The mole fraction solubility (x e) of BRN in various (EtOH + H2O) mixtures including pure EtOH and pure H2O was obtained at T = 298.2–323.2 K and p = 0.1 MPa by adopting a saturation shake flask method. Hansen solubility parameters (HSPs) of BRN, pure EtOH, pure H2O and (EtOH + H2O) mixtures free of BRN were also computed. The x e values of BRN were correlated using Van’t Hoff, Apelblat, Yalkowsky–Roseman, Jouyban–Acree and Jouyban–Acree–Van’t Hoff models with mean errors of <2.0%. The maximum and minimum x e value of BRN was obtained in pure EtOH (1.43 × 10−2 at T = 323.2 K) and pure H2O (3.08 × 10−6 at T = 298.2 K), respectively. The HSP of BRN was also found more closed with that of pure EtOH. The x e value of BRN was obtained as increasing significantly with the rise in temperature and increase in EtOH mass fraction in all (EtOH + H2O) mixtures including pure EtOH and pure H2O. The data of apparent thermodynamic analysis showed an endothermic and entropy-driven dissolution of BRN in all (EtOH + H2O) mixtures including pure EtOH and pure H2O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call