Abstract

To improve the crystal quality of 4,8-bis(2,4,6-trinitrophenyl)difurazolo [3,4-b:3',4'-e] pyrazine (TNBP), the solubility of TNBP in organic solvents (six pure and four mixed solvents) was determined by the laser monitoring technique from 293.15 to 353.15 K. The results showed that the solubility was positively correlated with the increase in the experimental temperature and the main solvent content, except for the co-solvent phenomenon in the DMSO + ethyl acetate solvent mixture. To explain the dissolution behavior of TNBP, the KAT-SER model was analyzed for pure solvent systems, and it was found that hydrogen bonding alkalinity and self-cohesiveness were the main influencing factors. The free energy of solvation and radial distribution function of TNBP in mixed solvents were also obtained by molecular dynamics simulation, and the effect of solute-solvent and solvent-solvent interactions on the solubility trend was analyzed. The experimental data were correlated using three empirical equations (van't Hoff equation, modified Apelblat equation, and λh equation), and the deviation analysis showed the good applicability of the modified Apelblat model. Furthermore, the dissolution of TNBP was heat-absorbing and not spontaneous, according to the thermodynamic characteristics estimated by the van't Hoff equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call