Abstract

Abstract. Condensed-phase uptake and reaction are important atmospheric removal processes for reduced nitrogen species, isocyanic acid (HNCO), methyl isocyanate (CH3NCO), and cyanogen halides (XCN, X = Cl, Br, I); yet many of the fundamental quantities that govern this chemistry have not been measured or are not well studied. These nitrogen species are of emerging interest in the atmosphere as they have either biomass burning sources, i.e., HNCO and CH3NCO, or, like the XCN species, have the potential to be a significant condensed-phase source of NCO− and therefore HNCO. Solubilities and the first-order reaction rate of these species were measured for a variety of solutions using a bubble flow reactor method with total reactive nitrogen (Nr) detection. The aqueous solubility of HNCO was measured as a function of pH and had an intrinsic Henry's law solubility of 20 (±2) M atm−1 and a Ka of 2.0 (±0.3) × 10−4 M (pKa = 3.7±0.1) at 298 K. The temperature dependence of HNCO solubility was very similar to other small nitrogen-containing compounds, such as HCN, acetonitrile (CH3CN), and nitromethane, and the dependence on salt concentration exhibited the “salting out” phenomenon. The rate constant of reaction of HNCO with 0.45 M NH4+, as NH4Cl, was measured at pH = 3 and found to be 1.2 (±0.1) × 10−3 M−1 s−1, faster than the rate that would be estimated from rate measurements at much higher pHs. The solubilities of HNCO in the non-polar solvents n-octanol (n-C8H17OH) and tridecane (C13H28) were found to be higher than aqueous solution for n-octanol (87±9 M atm−1 at 298 K) and much lower than aqueous solution for tridecane (1.7±0.17 M atm−1 at 298 K), features that have implications for multi-phase and membrane transport of HNCO. The first-order loss rate of HNCO in n-octanol was determined to be relatively slow, 5.7 (±1.4) × 10−5 s−1. The aqueous solubility of CH3NCO was found to be 1.3 (±0.13) M atm−1 independent of pH, and CH3NCO solubility in n-octanol was also determined at several temperatures and ranged from 4.0 (±0.5) M atm−1 at 298 K to 2.8 (±0.3) M atm−1 at 310 K. The aqueous hydrolysis of CH3NCO was observed to be slightly acid-catalyzed, in agreement with literature values, and reactions with n-octanol ranged from 2.5 (±0.5) to 5.3 (±0.7) × 10−3 s−1 from 298 to 310 K. The aqueous solubilities of XCN, determined at room temperature and neutral pH, were found to increase with halogen atom polarizability from 1.4 (±0.2) M atm−1 for ClCN and 8.2 (±0.8) M atm−1 for BrCN to 270 (±54) M atm−1 for ICN. Hydrolysis rates, where measurable, were in agreement with literature values. The atmospheric loss rates of HNCO, CH3NCO, and XCN due to heterogeneous processes are estimated from solubilities and reaction rates. Lifetimes of HNCO range from about 1 day against deposition to neutral pH surfaces in the boundary layer, but otherwise can be as long as several months in the middle troposphere. The loss of CH3NCO due to aqueous-phase processes is estimated to be slower than, or comparable to, the lifetime against OH reaction (3 months). The loss of XCNs due to aqueous uptake is estimated to range from being quite slow, with a lifetime of 2–6 months or more for ClCN and 1 week to 6 months for BrCN to 1 to 10 days for ICN. These characteristic times are shorter than photolysis lifetimes for ClCN and BrCN, implying that heterogeneous chemistry will be the controlling factor in their atmospheric removal. In contrast, the photolysis of ICN is estimated to be faster than heterogeneous loss for average midlatitude conditions.

Highlights

  • The earth’s atmosphere is a highly oxidizing environment in which chemical compounds are typically destroyed through radical pathways

  • Cyanogen chloride was once produced as a chemical warfare agent; its importance to the atmosphere is more related to its possible formation in the reaction of active chlorine species (HOCl/OCl−, chloramines) with Ncontaining substrates such as amino acids and humic substances (Na and Olson, 2006; Shang et al, 2000; Yang and Shang, 2004)

  • The results of the experiments with HNCO, CH3NCO, ClCN, BrCN, and ICN with the variety of solvents and conditions employed are summarized in Tables 1 and 2 and described below

Read more

Summary

Introduction

The earth’s atmosphere is a highly oxidizing environment in which chemical compounds are typically destroyed through radical pathways. Cyanogen chloride was once produced as a chemical warfare agent; its importance to the atmosphere is more related to its possible formation in the reaction of active chlorine species (HOCl/OCl−, chloramines) with Ncontaining substrates such as amino acids and humic substances (Na and Olson, 2006; Shang et al, 2000; Yang and Shang, 2004). These reactions are known to be important in systems in which chlorination is used for disinfection such as swimming pools and water treatment (see, for example, Afifi and Blatchley III, 2015) and perhaps indoor surfaces (Chen Wang and Jonathan Abbatt, personal communication, 2018). These data will be used to estimate atmospheric lifetimes against aqueous uptake and to assess the relative bioavailability of these compounds

Methods
Preparation of gas-phase standards
Detection of nitrogen compounds
Results and discussion
Solubility and reactions of HNCO
Solubility and reactions of CH3NCO
Solubility and reactions of XCN compounds
Non-aqueous solution
ClCN and BrCN
Atmospheric and environmental chemistry implications
CH3NCO
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call