Abstract

Phosphate solubility and sorption characteristics of 39 agricultural soils in the northwestern Canadian Prairie were studied to gain insights into the retention of fertilizer P added to soil. The soils were mostly acidic with base saturation of 59–95%. The solubility of P as determined by the equilibrium P concentration and phosphoric acid potential was low and appeared to be controlled by sorption of phosphate by soil components. The mean equilibrium solution P concentration was 0.03 mg L−1. Phosphorus concentration in saturation extracts was about one order of magnitude higher, but would have included organic and colloidal P since P analysis in these extracts was done by ICP. Sorption capacity of P as determined by Langmuir isotherm was greater for the Dark Gray and Black soils and gleysols, i.e., soils with higher amounts of organic matter, than the Gray Luvisolic and Solodic soils by about 30%. Partial correlation showed that clay content, Al-organic matter complexes (AlOM) and amorphous iron oxide (FeOX) were significantly correlated with P sorption capacity. When both topsoils and subsoils were considered, clay content was the most important soil property influencing P sorption capacity, followed by AlOM and FeOX (standard partial regression coefficients, b′, of 0.47, 0.39 and 0.38, respectively). When only topsoils were considered, AlOM and FeOX became more important than clay content in influencing P sorption (b′ = 0.47, 0.47, and 0.33, respectively). Native P, estimated by oxalate and anion-resin extractions, was associated with the hydrous iron oxides only, although soil pH also affected the resin-extractable P fraction. Key words: P retention, solubility, Luvisols, solodic soils

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call