Abstract

A platinum-lined, flowing autoclave facility was used to investigate the solubility/phase behavior of nickel oxide (NiO) in aqueous sodium phosphate solutions between 290 and 560 K. A layer of hydrous nickel oxide was concluded to exist on the nickel oxide surface below 468 K; only at higher temperatures did the anhydrous nickel oxide phase control the nickel ion solubility behavior. The measured solubility behavior was examined via a nickel(II) ion hydrolysis/complexing model and thermodynamic functions for the hydrolysis/complexing reaction equilibria were obtained from a least-squares analysis of the data. The existence of two new nickel ion complexes are reported for the first time: Ni(OH)2(HPO4)= and Ni(OH)3(H2PO4)=. The positive entropy change associated with the formation of Ni(OH)3(H2PO4)= leads to its dominance in alkaline phosphate solutions at elevated temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.