Abstract

In most soils, FeIII oxides (group name) are the common source of Fe for plant nutrition. Since this Fe has to be supplied via solution, the solubility and the dissolution rate of the Fe oxides are essential for the Fe supply. Hydrolysis constants and solubility products (Ksp) describing the effect of pH on FeIII ion concentration in solution are available for the well-known Fe oxides occurring in soils such as goethite, hematite, ferrihydrite. Ksp values are usually extremely low ((Fe3+)·(OH)3=10−37−10−44). However, for each mineral type, Ksp may increase by several orders of magnitude with decreasing crystal size and it decreases with increasing Al substitution assuming ideal solid solution between the pure end-members. Based on such calculations a poorly crystalline goethite with a crystal size of 5 nm may well reach the solubility of ferrihydrite. The variations in Ksp are of relevance for soils because crystal size and Al substitution of soil Fe oxides vary considerably and can now be determined relatively easily. The concentration of Fe2+ in soil solutions is often much higher than that of Fe(III) ions. Therefore, redox potential strongly influences the activity of FeII. At a given pH and Eh, the activity of FeII is higher the higher Ksp of the FeIII oxide and thus also varies with the type of Fe oxide present. Besides the solubility, it is the dissolution rate which governs the supply of soluble Fe to the plant roots. Dissolution of Fe oxides takes place either by protonation, complexation or, most important, by reduction. Numerous dissolution rate studies with various FeIII oxides were conducted in strong mineral acids (protonation) and they have shown that besides the Fe oxide species, crystal size and/or crystal order and substitution are important determinative factors. For example, in soils, small amounts of a more highly soluble meta- or instable Fe oxide such as ferrihydrite with a large specific surface (several hundred m2g−1) may be essential for the Fe supply to the plant root. Its higher dissolution rate can also be used to quantify its amount in soils. Ferrihydrite can be an important component in soils with high amounts of organic matter and/or active redox dynamics, whereas highly aerated and strongly weathered soils are usually very low in ferrihydrite. On the other hand, dissolution rates of goethites decrease as their Al substitution increases. Much less information exists on the rate of reductive and chelative dissolution of Fe oxides which generally simulate soil conditions better than dissolution by protonation. Here again, type of oxide, crystal size and substitution are important factors. Organic anions such as oxalate, which are adsorbed at the surface, may weaken the Fe3+-O bonds and thereby increase reductive dissolution. As often observed in weathering, the dissolution features of the crystals appear to follow zones of weakness in the crystal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call