Abstract

Efavirenz is a non-nucleoside reverse transcriptase inhibitor and categorized in to BCS class II drug. The aim of the present investigation was to apply quality by design approach to enhance the solubility, dissolution and stability of amorphous solid dispersions (ASDs) of efavirenz using a combination of Soluplus® and HPMCAS-HF polymers. In design of experiments, the user defined quadratic model was used to study the effect of variable concentrations of Soluplus® and HPMCAS-HF for the formation of ASDs of efavirenz. Similarly, a prototype ASD was made using Soluplus® as a carrier with efavirenz loading of 30%. The efavirenz ASDs granular extrudates were evaluated for saturation solubility as well as dissolution rate studies. X-ray powder diffraction, Differential scanning calorimetry, Fourier transform infrared, Atomic force microscopy and FTIR imaging to determine the solid state of efavirenz in the ASDs. DSC and XRD data confirmed that bulk crystalline efavirenz transformed to the amorphous form during the hot melt extrusion processing. Prototype ASD batch showed instability upon storage as per ICH guidelines over a period of 6months, observations inferred from DSC, XRD and in vitro dissolution studies. The maximum dissolution rate was observed when Soluplus® and HPMCAS-HF was in ratio of (60:20) as optimized by design of experiments study. Moreover, the optimized ASDs batch were stable at 40°C, 75% RH for a period of 6months without any dissolution rate changes, and remained into amorphous state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.