Abstract

Rates of reduction of Fe(III) oxyhydroxides by the bacterium Shewanella putrefaciens were measured as a function of the bacterial density and the Fe(III) substrate concentration. The results show that an earlier reported positive correlation between the solubility products ( ∗K so) and the maximum cell-specific reduction rates ( v max) of predominantly poorly crystalline Fe(III) oxyhydroxides also applies to insoluble and crystalline Fe(III) oxyhydroxides. The mineral solubilities were measured by a dialysis bag technique under acidic conditions (pH 1 up to 2.5) at 25 °C. Initial iron reduction rates by S. putrefaciens were determined in the presence of excess lactate as electron donor. In all cases, the microbial reduction rate exhibited saturation behavior with respect to the Fe(III) oxyhydroxide concentration. On a double logarithmic scale, the maximum rates v max and the solubility products defined a single linear free energy relationship (LFER) for all the Fe(III) oxyhydroxides considered. The solubility provided a better predictor of v max than the specific surface area of the mineral phase. A rate limitation by the electron transfer between an iron reductase and a Fe(III) center, or by the subsequent desorption of Fe 2+ from the iron oxide mineral surface, are both consistent with the observed LFER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.