Abstract

We investigate the propagation dynamics of the soliton-sinc, a kind of novel hybrid pulse, in the presence of higher-order effects with emphasis on the third-order dispersion (TOD) and Raman effects. At variance with the fundamental sech soliton, the traits of the band-limited soliton-sinc pulse can effectively manipulate the radiation process of dispersive waves (DWs) induced by the TOD. The energy enhancement and the radiated frequency tunability strongly depend on the band-limited parameter. A modified phase-matching condition is proposed for predicting the resonant frequency of the DWs emitted by soliton-sinc pulses, which is verified by the numerically calculated results. In addition, Raman-induced frequency shift (RIFS) of the soliton sinc pulse increases exponentially with a decrease of the band-limited parameter. Finally, we further discuss the simultaneous contribution of the Raman and TOD effects to the generation of the DWs emitted from the soliton-sinc pulses. The Raman effect can then either reduce or amplify the radiated DWs depending on the sign of the TOD. These results show that soliton-sinc optical pulses should be relevant for practical applications such as broadband supercontinuum spectra generation as well as nonlinear frequency conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call