Abstract
Transformative technologies for desalination and chemical separations call for understanding molecular transport through man-made and biological nanochannels. Using numerical simulation of single-file flow of water through carbon nanotubes, we find that flow is due to fast-moving density variations (solitons) that are additive so flow rate is proportional to number of solitons. Simulation results match predictions from a theoretical model for soliton propagation. From 1-300K flow rates increase as temperature decreases. Our results build a fundamentally new understanding of nanochannel flows and suggest new principles for the design of nanoscale devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.