Abstract
In a recent study, satellite images have shown that internal solitons are active in the northern South China Sea (SCS). During the Asian Seas International Acoustic Experiment (ASIAEX) pilot studies, current profiler and thermistor chain moorings were deployed in the spring of 1999 and 2000 to investigate internal solitons northeast of Tung-Sha Island on the continental slope of the northern SCS. Most of the observed internal solitons were first baroclinic mode depression waves. The largest horizontal current velocity, vertical displacement, and temperature variation induced by the internal solitons were around 240 cm/s, 106 m, and 11/spl deg/C, respectively, while the estimated nonlinear phase speed was primarily westward at 152 /spl plusmn/ 4 cm/s. The observed internal solitons could be categorized as four types. The first type is the incoming wave from deep water and can be described reasonably well with the KdV equation. The second and third types are in the transition zone before and close to the turning point (where the upper and lower layer depths are equal), respectively. These two types of solitons were generally near the wave-breaking stage. The fourth type of soliton is a second baroclinic mode and probably was locally generated. The time evolutions are asymmetric, especially at the middle depths. A temperature kink following the main pulse of the soliton is often seen. Higher order nonlinear and shallow topographic effects could be the primary cause for these features. The appearance/disappearance of internal solitons coincides mostly with spring/neap tide. The internal soliton is irregularly seen during the neap tide period and its amplitude is generally small. The time interval between two leading solitons is generally around 12 h. The first baroclinic mode of the semidiurnal tide has a larger amplitude than the diurnal tide and could redistribute its energy into the soliton.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.