Abstract

A nonlinear Schrödinger equation that includes two terms with power-law nonlinearity and external potential modulated both on time and on the spatial coordinates is considered. The model appears in various branches of contemporary physics, especially in the case of lower values of the nonlinearity power. A significant generalization of the similarity transformations approach to construct explicit localized solutions for the model with arbitrary power-law nonlinearities is introduced. We obtain the exact analytical bright and kink soliton solutions of the governing equation for different nonlinearities and potentials that are of particular interest in applications to Bose-Einstein condensates and nonlinear optics. Necessary conditions on the physical parameters for propagating envelope formation are presented. The obtained results can be straightforwardly applied to a large variety of nonlinear Schrödinger models and hence would be of value to understand nonlinear phenomena in a diversity of nonlinear media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.