Abstract

We investigate the properties of spatial solitons in the fractional Schrodinger equation (FSE) with parity-time (PT)-symmetric lattice potential supported by the focusing of Kerr nonlinearity. Both one- and two-dimensional solitons can stably propagate in PT-symmetric lattices under noise perturbations. The domains of stability for both one- and two-dimensional solitons strongly depend on the gain/loss strength of the lattice. In the spatial domain, the solitons are rigidly modulated by the lattice potential for the weak diffraction in FSE systems. In the inverse space, due to the periodicity of lattices, the spectra of solitons experience sharp peaks when the values of wavenumbers are even. The transverse power flows induced by the imaginary part of the lattice are also investigated, which can preserve the internal energy balances within the solitons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call