Abstract

Assuming that the nucleus can be treated as a perfect fluid we study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. The existence of these solitons depends on the nuclear equation of state, which, in its turn, depends on the underlying microscopic theory of the nucleon-nucleon interaction and also on the approximations used in the calculations. In this work we reexamine early works on nuclear solitons, replacing the old equations of state by others, more modern and more realistic, base on QHD and on its variants. Our analysis shows that KdV solitons may indeed be formed in the nucleus with a width around one and two fermis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.