Abstract
Very recent experimental work has demonstrated the existence of Kelvin waves along quantized vortex filaments in superfluid helium. The possible configurations and motions of such filaments is of great physical interest, and Svistunov previously obtained a Hamiltonian formulation for the dynamics of quantum vortex filaments in the low-temperature limit under the assumption that the vortex filament is essentially aligned along one axis, resulting in a two-dimensional (2D) problem. It is standard to approximate the dynamics of thin filaments by employing the local induction approximation (LIA), and we show that by putting the two-dimensional LIA into correspondence with the first equation in the integrable Wadati-Konno-Ichikawa-Schimizu (WKIS) hierarchy, we immediately obtain solutions to the two-dimensional LIA, such as helix, planar, and self-similar solutions. These solutions are obtained in a rather direct manner from the WKIS equation and then mapped into the 2D-LIA framework. Furthermore, the approach can be coupled to existing inverse scattering transform results from the literature in order to obtain solitary wave solutions including the analog of the Hasimoto one-soliton for the 2D-LIA. One large benefit of the approach is that the correspondence between the 2D-LIA and the WKIS allows us to systematically obtain vortex filament solutions directly in the Cartesian coordinate frame without the need to solve back from curvature and torsion. Implications of the results for the physics of experimentally studied solitary waves, Kelvin waves, and postvortex reconnection events are mentioned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.