Abstract

Under a simple shear flow and in a static external magnetic field, the production of defects in the director-aligning regime of nematic liquid crystals has been investigated in terms of the Leslie–Ericksen theory. The equation of motion of the nematic director, which conforms to the driven over-damped sine-Gordon equation, has a soliton solution of the amplitude π. We show that the stationary state with the director uniformly oriented at a Leslie angle is only a metastable state and the potential, which governs the motion of the director, has a number of stable stationary states. For a strong magnetic field, the higher energy barrier between the stable and unstable states leads the director to be locked along the magnetic field direction. However, at the appropriate shear rate and magnetic field the defects, which appear as a stable solitary solution, can be nucleated from a uniformly aligned nematic liquid crystal. We have calculated the stationary travelling velocity of the solitary waves and the distance between a pair of defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.