Abstract

For the long-distance communication and manufacturing problems in optical fibers, the propagation of subpicosecond or femtosecond optical pulses can be governed by the variable-coefficient nonlinear Schrödinger equation with higher order effects, such as the third-order dispersion, self-steepening and self-frequency shift. In this paper, we firstly determine the general conditions for this equation to be integrable by employing the Painlevé analysis. Based on the obtained 3 × 3 Lax pair, we construct the Darboux transformation for such a model under the corresponding constraints, and then derive the nth-iterated potential transformation formula by the iterative process of Darboux transformation. Through the one- and two-soliton-like solutions, we graphically discuss the features of femtosecond solitons in inhomogeneous optical fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call